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ABSTRACT
This  paper  describes  the  Differential  Synchronization  (DS) 
method for keeping documents synchronized.  The key feature of 
DS is that it is simple and well suited for use in both novel and 
existing  state-based  applications  without  requiring  application 
redesign.  DS uses deltas to make efficient use of bandwidth, and 
is fault-tolerant, allowing copies to converge in spite of occasional 
errors.  We consider practical implementation of DS and describe 
some  techniques  to  improve  its  performance  in  a  browser 
environment.

Categories and Subject Descriptors
H.5.3  [Group  and  Organization  Interfaces]:  Collaborative 
computing
I.7.1 [Document and Text Processing]: Version control

General Terms: Algorithms, Performance, Reliability.

Keywords: Synchronization, Collaboration.

1. INTRODUCTION
The increased availability of always-on Internet connections has 
increased the demand for applications which allow multiple users 
to  collaborate  with  each  other  in  real-time.   Many  such 
applications  exist,  including  Google  Docs,  SubEthaEdit  and 
Mozilla Bespin.  At the heart of each application is a choice of 
synchronization  algorithm.   In  our  experience  this  choice  is 
usually made early in the development cycle, is very difficult to 
change  later,  and  has  a  major  impact  on  all  the  operating 
characteristics of the application.

In this paper we present Differential Synchronization (DS), which 
is a minimalistic synchronization mechanism, whose design goal 
is to have minimal impact on application design.  This goal also 
makes DS suited for use in existing applications.

DS is a state-based optimistic synchronization algorithm.[13]  The 
synchronization topology is a tree, with changes converging on 
inner nodes, and thus no elaborate versioning model is needed to 
capture causality.  Concurrent changes are reconciled by patching 
the changes from one peer into the copy on another.  Changes are 
detected by differencing the current state against  the previously 

established state, yielding a diff.  Updates are propagated between 
peers as that diff.

This algorithm's main attributes are:

• Symmetrical  with  (nearly)  identical  code  running  on  both 
client and server.

• It  is state-based and does thus not require that applications 
maintain a history of edits.

• Asynchronous,  which  eliminates blocking user input  while 
waiting for a response over the network.

• Forgiving of unreliable and high-latency networks.

• Convergent, errors do not cause different copies to diverge.

• Suitable for any content for which semantic diff and patch 
algorithms exist.

• Highly scalable.

As of this writing, the major users of DS are the set of code 
editors which use or are compatible with MobWrite[4], such as 
Eclipse,  Bespin1 and  Gedit2.   Using  DS  as  a  standard 
synchronization system between them allows users of one editor 
to collaborate with users of any other editor.  Typical use cases 
include pair programming between distributed sites, the ability to 
invite a remote expert to debug some code in an active session, 
and  enabling  employers  to  watch  and  interact  with  code being 
written by a candidate during a telephone job interview. 

One unexpected use for DS involves online applications desiring 
autosave functionality.  In such applications it is not uncommon 
for a user to inadvertently end up collaborating with himself:

1. User makes changes using a desktop.  System autosaves.

2. User opens application with a laptop.  System restores from 
autosave.

3. User makes changes from the laptop.  System autosaves.

4. User switches back to the desktop which had been left open. 
System autosaves, destroying work done on the laptop.

With DS keeping all open versions constantly in sync, the user's 
keystrokes  are  mirrored  in  close  to  real-time  across  all  his 
terminals.   Thus  the  user  does  not  need  to  be  aware  of  his 
workflow and  can  submit  the  content  from any terminal  while 
being assured that all edits are present.

1  https://bespin.mozilla.com/
2  http://groups.google.com/group/patchworkeditor
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2. ALTERNATIVE STRATEGIES
Three common approaches to synchronization are the pessimistic 
approach, edit-based and three-way merges.  These methods are 
conceptually simple, but all have drawbacks.

2.1 Pessimistic
The pessimistic approach is the simplest.  In its most basic form, a 
shared document may only be edited by one user at a time.  A 
familiar example is Microsoft Word's behaviour when opening a 
document  on a networked  drive.[9]  The first  user to  open the 
document has global write access, while all others have read-only 
access.   This  does  not  allow  for  real-time  collaboration  by 
multiple users.

A  refinement  would  be  to  dynamically  lock  and  release 
subsections of the document.   However this still  prevents close 
collaboration.   Subsection locking also restricts editability when 
the  document  is  small.   Furthermore,  support  for  fine-grained 
locking would have to be explicitly built into the application.

Finally,  the  pessimistic  model  is  ill-suited  for  operation  in 
environments with unreliable connectivity.

2.2 Edit-based
The edit-based approach is also simple.  It relies on capturing all 
user actions and mirroring them across the network to other users. 
Algorithms based on Operation  Transformation[1] are currently 
popular for implementing edit-based collaborative systems.

Obtaining a snapshot of the state is usually trivial, but capturing 
edits is a different matter altogether.  A practical challenge with 
edit-based  synchronization  is  that  all user  actions  must  be 
captured.   Obvious  ones  include  typing,  but  edits  such  as  cut, 
paste,  drag,  drop,  replacements  and  autocorrect  must  also  be 
caught.   The richness  of modern  user  interfaces  can make this 
problematic, especially within a browser-based environment.

Any failure during edit passing results in a fork.  Since each edit 
changes the location of subsequent edits, one lost edit may cause 
subsequent edits to be applied incorrectly, thus increasing the gap 
between the two versions.  This is further complicated by the best-
effort nature of most networking systems.  If a packet gets lost or 
significantly  delayed,  the  system  must  be  able  to  recover 
gracefully.

Edit-based collaborative systems are not naturally convergent.

2.3 Three-way merges
Three-way  merges  are  found  in  Subversion,[12] the  Mjølner 
Project,[10] Google 
Docs[6] and  many 
other  products.   An 
overview  of  the 
process  is  shown  in 
Figure 1:

1. The  client 
sends  the 
contents  of  the 
document  to 
the server.

2. The  server 
performs  a 

three-way merge  to  extract  the  user's  changes  and  merge 
them with changes from other users.

3. The server sends a new copy of the document to the client.

If the user made any changes to the document during the time this 
synchronization  was in  flight,  the  client  is  forced to  throw the 
newly received version away and try again later.3  This is a half-
duplex system: as long as one is typing, no changes are arriving. 
Shortly  after  one  stops  typing,  the  input  from  other  users  is 
integrated and either appears, or else a dialog pops up to let one 
know that there was a collision.

This  system  could  be  compared  to  an  automobile  with  a 
windshield  which  becomes opaque  while  driving.   Look at  the 
road ahead, then drive blindly for a bit, then stop and look again. 
Major collisions become commonplace when everyone else on the 
road has the same type of "look xor drive" cars.

Server-side three-way merges do not scale well when attempting 
real-time collaboration across a network with latency.

3. DIFFERENTIAL 
SYNCHRONIZATION OVERVIEW
DS is a symmetrical algorithm employing an unending cycle of 
background difference (diff) and patch operations.   There is no 
requirement  that  "the  chickens  stop  moving  so  we  can  count 
them" which plagues server-side three-way merges.
Figure 2 is an idealized data flow diagram for DS. It assumes two 
documents  (misleadingly  called  Client  Text  and  Server  Text) 
which are located on the same computer with no network.

Figure 2: Differential Synchronization without a network.
The  following  walk-through  starts  with  Client  Text,  Common 
Shadow and Server Text all being equal.  Client Text and Server 

3  The  three-way merges  in  version  control  systems  (such  as 
Subversion)  usually  happen  on  the  clients,  not  the  server. 
However this leads to the same issue, merely in reverse.  If the 
server version updates while the client is merging, the client's 
merge will not be accepted.

Figure 1: Three-way merge.



Text may be edited at any time.  The goal is to keep these two 
texts as close as possible with each other at all times.
1. Client Text is diffed against the Common Shadow.
2. This returns  a list  of edits which  have been performed on 

Client Text.
3. Client Text is copied over to Common Shadow.  This copy 

must be identical to the value of Client Text in step 1, so in a 
multi-threaded  environment  a  snapshot  of  the  text  should 
have been taken.

4. The edits are applied to Server Text on a best-effort basis.
5. Server Text is updated with the result of the patch.  Steps 4 

and 5 must be atomic, but they do not have to be blocking; 
they  may  be  repeated  until  Server  Text  stays  still  long 
enough.

The  process  now repeats  symmetrically  in  the  other  direction. 
This time the Common Shadow is the same as Client Text was in 
the previous half of the synchronization, so the resulting diff will 
return modifications made to  Server Text,  not  the  result  of the 
patch in step 5.
The enabling feature is that the patch algorithm is fuzzy, meaning 
patches may be applied even if the document has changed.  Thus 
if  the  client  has  typed  a  few  keystrokes  in  the  time  that  the 
synchronization took to complete, the patches from the server are 
likely to have enough recognizable context that they may still be 
applied successfully.  However, if some or all of the patches fail 
in  step  4,  they  will  automatically  show  up  negatively  in  the 
following diff and will be patched out of the Client Text.  Here's 
an example of actual data flow.
a. Client Text, Common Shadow and Server Text start out with 

the same string: "Macs had the original point and click UI."
b. Client Text is edited (by the user) to say: "Macintoshes had 

the original point and click interface." (edits underlined)
c. The Diff in step 1 returns the following two edits4:

@@ -1,11 +1,18 @@
 Mac
+intoshe
 s had th
@@ -35,7 +42,14 @@
 ick 
-UI
+interface
 .

d. Common Shadow is updated to also say: "Macintoshes had 
the original point and click interface."

e. Meanwhile Server Text has been edited (by another user) to 
say: "Smith & Wesson had the original point and click UI." 
(edits underlined)

f. In step 4 both edits are patched onto Server Text.  The first 
edit fails since the context has changed too much to insert 
"intoshe" anywhere meaningful.   The second edit  succeeds 
perfectly since the context matches.

4  Edits are shown in the standard Unidiff format, but character-
based instead of line-based.  Lines starting with '@@' contain the 
expected location for the following edit, lines starting with '+' 
are insertions, lines starting with '-' are deletions, and the rest is 
unchanging context.

g. Step 5 results in a Server Text which says: "Smith & Wesson 
had the original point and click interface."

h. Now the  reverse  process  starts.   First  the  Diff  compares 
Server Text with Common Shadow and returns the following 
edit:
@@ -1,15 +1,18 @@
-Macintoshes
+Smith & Wesson
 had

i. Finally this patch is applied to Client Text, thus backing out 
the failed "Macs" → "Macintoshes" edit and replacing it with 
"Smith  &  Wesson".   The  "UI"  →  "interface"  edit  is  left 
untouched.   Any changes which have been made to Client 
Text  in  the  mean  time  will  be  patched  around  and 
incorporated into the next synchronization cycle.

4. DUAL SHADOW METHOD
The method described above is the simplest form of differential 
synchronization,  but  it  will  not  work  on  client-server  systems 
since the Common Shadow is, well, common.  In order to execute 
on two systems, the shadow needs to be split in two and updated 
separately.   Conceptually  the  dual  shadow  method  shown  in 
Figure 3 is the same algorithm as the simpler version presented in 
Figure 2.

Figure 3: Differential Synchronization with shadows.
Client Text and Server Shadow (or symmetrically Server Text and 
Client Shadow) must be absolutely identical after every half of the 
synchronization.   This  should  be  the  case  since  "(v1  Diff  v2) 
Patch v1 == v2".  Thus assuming the system starts in a consistent 
state, it should remain in a consistent state.  Note that the patches 
on  the  shadows  should  fit  perfectly,  thus  they may be  fragile 
patches,  whereas  the  patches  on  the  texts  are  best-effort  fuzzy 
patches.
However,  on  a  network  with  best-effort  delivery,  nothing  is 
guaranteed.   Therefore  a  simple  checksum  of  Client  Shadow 
ought  to  be sent  along with  the  Edits  and compared to  Server 
Shadow after the patches have been applied.  If the checksum fails 
to match, then something went wrong and one side or the other 
must transmit the whole body of the text to get the two parties 
back  in  sync.   This  will  result  in  data  loss  equal  to  one 
synchronization cycle.



5. GUARANTEED DELIVERY 
METHOD
In  the  event  of a  transitory network  failure,  an  outbound  or  a 
return  packet  may get  lost.   In  this  case  the  client  might  stop 
synchronizing for a while until the connection times out.  When 
the connection is restored on the following synchronization, the 
shadows will be out of sync which requires a transmission of the 
full text to get back in sync.  This will destroy all changes since 
the previous successful synchronization.  If this form of data-loss 
is  unacceptable,  a  further  refinement  shown  in  Figure  4 adds 
guaranteed delivery.

Figure  4:  Differential  Synchronization  with  guaranteed 
delivery.
In  a  nutshell:  Normal  operation  works  identically  to  the  Dual 
System Method described above.  However in the case of packet 
loss, the edits are queued up in a stack and are retransmitted to the 
remote  party  on  every  sync  until  the  remote  party  returns  an 
acknowledgment of receipt.  The server keeps two copies of the 
shadow,  "Server  Shadow"  is  the  most  up  to  date  copy,  and 
"Backup Shadow" is the previous version for use in the event that 
the previous transmission was not received.
Normal operation: Client Text is changed by the user.  A Diff is 
computed between Client Text and Client Shadow to obtain a set 
of edits which were made by the user.  These edits are tagged with 
a  client  version  number  ('n')  relating  to  the  version  of  Client 
Shadow they were created from.   Client  Shadow is  updated  to 
reflect  the  current  value  of  Client  Text,  and  the  client  version 
number is incremented.  The edits are sent to the server along with 
the client's acknowledgment of the current server version number 
('m') from the previous connection.  The server's Server Shadow 
should  match both  the provided  client  version  number and the 
provided server version number.  The server patches the edits onto 
Server Shadow,  increments the client version number of Server 
Shadow  and  takes  a  backup  of  Server  Shadow  into  Backup 
Shadow.   Finally the  server then  patches the  edits  onto  Server 
Text.  The process then repeats symmetrically from the server to 
the client, with the exception that the client doesn't take a backup 
shadow.  During the return communication the server will inform 
the client that it received the edits for version 'n', whereupon the 
client will delete edits 'n' from the stack of edits to send.

Duplicate packet5: The client appears to send Edits 'n' to the server 
twice.   The first  communication  is processed normally and the 
response sent.  Server Shadow's 'n' is incremented.  The second 
communication  contains  an 'n'  smaller  than  the 'n'  recorded  on 
Server Shadow.  The server has no interest in edits it has already 
processed, so does nothing and sends back a normal response.
Lost outbound packet: The client sends Edits 'n' to the server.  The 
server never receives it.  The server never acknowledges receipt of 
the edit.  The client leaves the edits in the outbound stack.  After 
the connection times out, the client takes another diff, updates the 
'n' again, and sends both sets of edits to the server.  The stack of 
edits  transmitted  keeps  increasing  until  the  server  eventually 
responds with acknowledgment that it got a certain version.
Lost return packet: The client sends Edits 'n' to the server.  The 
server receives it, but the response is lost.  The client leaves the 
edits in the outbound stack.  After the connection times out, the 
client takes another diff, updates the 'n' again, and sends both sets 
of edits to the server.  The server observes that the server version 
number 'm' which the client is sending does not match the server 
version number on Server Shadow.   But both server and client 
version numbers do match the Backup Shadow.  This indicates 
that  the  previous  response must  have been lost.   Therefore  the 
server deletes its edit stack and copies the Backup Shadow into 
Shadow Text  (step  4)6.   The  server  throws  away the  first  edit 
because it already processed (same as a duplicate packet).   The 
normal workflow is restored: the server applies the second edit, 
then computes and transmits a fresh diff to the client.
Out of order packet: The server appears to lose a packet, and one 
(or both) of the lost packet scenarios is played out.  Then the lost 
packet arrives, and the duplicate packet scenario is played out.
Data  corruption  in  memory  or  network:  There  are  too  many 
potential  failure  points  to  list,[14] however  if  the  shadow 
checksums  become  out  of  sync,  or  one  side's  version  number 
skips into the future, the system will reinitialize itself.  This will 
result  in  data  loss  for  one  side,  but  it  will  never  result  in  an 
infinite loop of polling.

5.1 Asymmetry
An obvious question is that given the otherwise perfect symmetry 
between client  and server,  why does the  server  have a Backup 
Shadow  whereas  the  client  does  not?   The  source  of  this 
asymmetry is the asymmetrical nature of the connections.   In  a 
web-based client-server configuration, the client is the only entity 
which can initiate a connection.  Depending on data losses, there 
are only three possible  outcomes: 1) client sends data which is 
lost before reaching the server, 2) client sends data to server, but 
server's response is lost before reaching client, 3) client and server 
complete  a  successful  round-trip.   Notably  missing  is  the 
possibility  that  the  client's  data  is  lost  but  the  server's  data  is 
received.  Every time the server sends information to the client, 
that implies a successful connection must have been established 

5  If  using  TCP/IP,  duplicate  and  out  of  order  packets  should 
theoretically  be  impossible.   However  experience  shows  that 
there are a lot of routers and proxies on the Internet which take 
shortcuts and make mistakes.

6  An alternative strategy would  be to  use the  diffs  in  the edit 
stack to reverse patch the shadow back to the required version. 
This obviates the need for the backup shadow.  While saving 
storage space, this is somewhat more computationally complex.



from the client to the server.  Thus the server cannot get into a 
situation  where  it  repeatedly sends  packets  to  the  client  which 
don't arrive — while not obtaining any packets from the client.

The client could implement a Backup Shadow, but it would never 
get used when run on a web-based client-server architecture.  For 
symmetrical  architectures  (e.g.  peer-to-peer  or  server-to-server) 
where either side can initiate  a connection to the other,  then a 
Backup Shadow would be required on both sides.

6. TOPOLOGY
The  above  diagrams  demonstrate  synchronization  between  two 
parties, either a user and a server, or a pair of users.  Figure 5 
illustrates  how  the  same  synchronization  strategy  can  be 
multiplied to service any number of additional clients in a server-
centric network.  The Server Text for each synchronization loop is 
common with  all  the  other  loops.   When Client  1  changes his 
document, Server Text is updated upon the next synchronization 
cycle, and those changes are passed on to all other clients on the 
following cycle.

Figure 5: Six client, one server synchronization network.
Scalability may become an issue as the number of clients increase. 
Diff and patch can be expensive  operations,  thus  a server  may 
become overloaded.  There are two simple methods of distributing 
the system onto multiple servers.

One method illustrated in Figure 6 is to separate the database from 
the algorithm.  Thus one database would service any number of 
load-balanced servers.  A client could hit any server, and as long 
as the view of the shared database is identical across all servers, 
the system remains consistent.

Figure 6: Many servers, single database.
Another method illustrated in Figure 7 is to introduce a server-to-
server  topology.  In  the  diagram below,  the  clients  are  divided 
equally between two servers and the two servers are linked to each 
other  with  exactly the same type  of connection  as between the 
servers  and  the  clients.   Additional  servers  may  be  added 
seamlessly whenever capacity is exceeded.  Servers may only be 
removed when all their clients depart and they only have a single 
connection to another server.

Figure 7: Six client, two server synchronization network.
As the network expands, a potential problem is latency.  Each link 
might  synchronize  every five seconds  (see  section  8).   Thus  it 
would take a change from Client 1 up to fifteen seconds to appear 
for Client 4.  As latency increases, so does the potential for non-
trivial  collisions.   Accordingly  it  is  important  to  avoid  a  long 
chain of servers; a balanced tree offers the shortest path between 
clients, and thus the least latency.

Latency  may  also  be  reduced  by  significantly  increasing  the 
synchronization  frequency  between  servers.   If  the  servers  are 
located next  to  each other,  then  there  is  no  bandwidth  cost  in 
synchronizing several times a second.

7. DIFF AND PATCH
All  the  examples  in  this  paper  have  shown  synchronization  of 
plain  text.   DS  can  handle  any  content  (plain  text,  rich  text, 
bitmaps, vector graphics,  etc) as long as a difference algorithm 
and a fuzzy patch algorithm are available for the content.

As  the  only  computationally  expensive  components  of  DS, 
improving  the  efficiency  of  these  algorithms  dramatically 
improves  the  responsiveness  and  scalability  of  the  system. 
Likewise,  improving  the  accuracy  of  these  algorithms  greatly 
reduces the number and severity of collisions.



7.1 Diff
The diff operation is fulfilling two very different roles within the 
synchronization cycle.  The first is to update Server Shadow with 
the current content of Client Text and Client Shadow.  The result 
should make all three texts identical.  This is a simple task which 
could use any form of synchronization; diff, delta edits[7] or even 
transmission of the full text.  The second operation is more of a 
challenge: updating Server Text with the changes made to Client 
Text.   Server Text may have changed in the mean time,  which 
means that the diff must be semantically meaningful.

For  instance,  if  the  word  "cat"  was  deleted  and  replaced  with 
"hag", then technically one could think of it as the replacement of 
the first and third letters, with the second letter being preserved. 
This would be the minimal diff.

Client Text:   The cat is here.
Client Shadow: The hag is here.
Minimal Diff:  The chatg is here.
Semantic Diff: The cathag is here.

But this was not the semantic intent of the user.  The user changed 
the word, not two letters.  The fact that 'a' was the same in both 
words  was  completely  coincidental.   This  distinction  matters 
because if in the mean time another user changed the server's text 
from "cat" to "cut", the result when applying the first user's patch 
should  be either  "hag" (client  wins)  or  "cut" (server wins),  but 
certainly not "hug" (merged differences).  An algorithm must be 
used to expand minimal diffs into semantically meaningful diffs.
[2]

Another  issue  with  diff  is  its  lack of  scalability.   The  leading 
plain-text diff algorithm is O(nd) where n is the length of the text 
and d is the length of the changes.[11]  Clearly this does not scale 
for  long  documents  or  large  edits.   Fortunately  the  general-
purpose  diff  algorithm  can  be  wrapped  inside  a  number  of 
shortcuts which typically obviate the need to run this expensive 
algorithm  at  all.[2]  The  following  three  shortcuts  apply 
specifically to plain-text differencing, but variations of them may 
be applicable to other content.

7.1.1 Equality
The  overwhelming  majority  of  diffs  in  DS are  comparing  two 
identical texts with each other.  Detecting this special case can be 
done with a single == operation.

7.1.2 Common Prefix/Suffix
If there is any commonality at all between the texts, it is likely that 
they will share a common substring at the start and/or the end.

Text1: The cat.
Text2: The black cat.

After removing the common prefix and suffix in this example one 
gets "" (the empty string) and "black " respectively.  Identifying 
the common prefix or suffix can be done in  linear time with a 
simple  loop,  or  by  comparing  substrings  in  a  binary  search. 
Figure 8 shows a test of the running time of these two algorithms 
as n increases geometrically.

Figure 8: Performance of Linear vs. Binary search algorithms.
The linear search scales at O(n) as expected.  The binary search 
scales at O(log n).  This result is counter-intuitive given that the 
binary search ought to be O(n log n) when one considers that an 
equality operation itself is likely to be O(n).  However within the 
context  of  a  high-level  language,  the  performance  of  low-level 
operations  such  as  "=="  effectively  becomes  O(1).   The  data 
graphed  above comes  from  timings  of  a  JavaScript 
implementation;  tests  in  Python  show  the  same  pattern. 
Obviously in  a low-level  language  such  as  C the  linear  search 
would be superior to the binary search.

7.1.3 Singular Insertion/Deletion
After the  common prefix and suffix are trimmed off,  it  is  very 
common  that  one  or  the  other  strings  is  empty.   The  above 
example  resulted  in  ""  (the  empty string)  and  "black  "  which 
clearly represents an insertion of "black ".  In the case where the 
second string is the empty string, then the operation is a deletion. 
Neither  case  requires  running  the  general-purpose  difference 
algorithm.
The net result of these three shortcuts is that if a diff is executed 
frequently enough to catch each change individually (where one 
change can be an insertion or a deletion of arbitrary length), then 
the general-purpose  difference algorithm is  never  executed  and 
performance  becomes  O(log  n)  for  languages  where  string 
equality is a constant time operation and O(n) for languages where 
string equality is linear.
Of course there remains the pathological case of an instantaneous 
change of the whole document.  Consider selecting all the existing 
text then pasting new text from the clipboard.  To guard against 
this case the difference algorithm can be equipped with a timeout 
which if reached will cause it to simply return a deletion of the old 
text and an insertion of the new text.  While this may not be the 
minimal difference, it is likely in such cases to be the semantic 
intent of the user and thus preferred in the context of DS.

7.2 Patch
The  patch  operation  is  just  as  critical  to  the  operation  of  the 
system.   This  system requires  that  patches  be  applied  in  and 



around  text  which  may  not  exactly  match  the  expected  text. 
Furthermore, patches must be applied 'delicately', taking care not 
to overwrite changes which do not need to be overwritten.

Patch  must  look at  two (potentially conflicting)  variables  when 
attempting to find the correct place to make an insertion.  The first 
is to find text with the smallest Levenshtein distance between the 
expected text (based on the context of the patch) and the actual 
text.[5]  The second is to find a location reasonably close to the 
expected location  of the  patch.   It  is  probably more correct  to 
apply a patch onto a near-match at the expected location than to a 
perfect match at the other end of the document.

The  Bitap  algorithm  offers  a  remarkably  efficient  method  of 
locating  near-matches  in  plain-text.[15]  Once  the  best  match 
location is identified, a diff can be run against the expected text 
and the actual text, thus creating an accurate translation matrix of 
indices from one text to the other.[3]  The index of the patch may 
then be updated, and finally the patch may be applied.

User  complaints  identified  one  necessary  exception  to  the 
requirement  of  delicate  patching.  In  cases  where  the  shared 
content is entirely numeric or part of a limited set of allowable 
values, the patches should not be merged.  Consider the following 
text merge:

Base:  cat
User1: Cat
User2: cats
Merge: Cats

While this is an ideal merge of the users' combined intentions, the 
same merge when done with numbers is clearly not correct:

Base:  145
User1: 845
User2: 1459
Merge: 8459

A  similar  case  is  found  when  collaborating  a  field  that  has 
enumerated types, such as a dropdown list of the days of the week 
('Monturday' is not usually acceptable).  In cases of non-mergable 
content, patching should simply be skipped, and a "last user wins" 
approach taken.

7.2.1 Handling Collisions
Implementations of DS must consider the consequences of patch 
errors.  This is a usability issue, not an algorithmic one.  Some 
applications may choose synchronize very frequently and quietly 
drop patches which don't fit.  The advantage of this option is that 
in  the  event  of  a  collision  there  are  at  least  two  users  whose 
attention is currently focused on the offending area, and either one 
of  them can  correct  the  content  which  they  typed  in  the  past 
second or two.

Other applications may choose to synchronize less frequently and 
require user interaction on failed patches.  This might be in the 
form of inline annotations that the users can resolve when they 
wish.  The advantage of this option is that users' content is never 
dropped or mangled.

8. ADAPTIVE TIMING
The  frequency of  each  client's  update  cycle  is  a  key factor  in 
determining  the  responsiveness  of  the  system.   Insufficiently 
frequent  updates  result  in  more  computationally  expensive  diff 
and patch operations,  major  edit  collisions,  merge failures,  and 
frustration when attempting to interact with other users.  Overly 

frequent  updates  result  in  higher  network  traffic  and  increased 
system load.

An  advantage  of  the  Guaranteed  Delivery  Method  described 
above  is  that  it  decouples  the  differencing  operation  from the 
network transmission.  Diffs can be taken at frequent intervals (to 
conserve CPU resources), added to the edit stack, then transmitted 
in batches at a slower rate (to conserve network resources).

An  adaptive  system  can  continuously  modify  the  network 
synchronization  frequency  for  each  client  based  on  current 
activity.  Hard-coded upper and lower limits would be defined to 
keep the cycle within a reasonable range (e.g. 1 second and 10 
seconds  respectively).   User  activity and  remote activity would 
both decrease the time between updates (e.g. halving the period). 
Sending and receiving an empty update would increase the time 
between updates (e.g. increasing the period by one second).  This 
adaptive timing automatically tunes the update frequency so that 
each client gradually backs off when activity is low, and quickly 
reengages when activity is high.

9. FUTURE WORK
The fuzzy patch operation is actually a simple implementation of a 
three-way merge.  The two branches (Server Text and the post-
update  Server  Shadow)  and  the  base  version  (the  pre-update 
Server Shadow) are all available on the server.  Thus one could 
choose  instead  to  use  one  of  the  many other  three-way merge 
algorithms  which  are  available.[8]  Naturally  the  same 
opportunity applies on the client side.

One  limitation  of  DS  as  described  here  is  that  only  one 
synchronization packet may be in flight at any given time.  This 
would be a problem if there was very significant latency in the 
connection.  An example would be a client on Mars and a server 
on Earth.  A half hour for the round trip at the speed of light is 
unavoidable,  however  it  would  be  better  to  send  a  continuous 
stream of updates in each direction, not waiting for the reply to 
arrive.  The algorithm does not currently support this feature.

Another avenue for exploration would be to keep track of which 
user was responsible for which edits.  Currently the edits from all 
users  are  blended  together  on  the  server,  making  attribution 
difficult.  Untangling this blend would allow incoming edits to be 
visually attributed to specific users, as well as potentially allowing 
rollbacks of individual contributions and other features available 
in source control systems.

10. CONCLUSIONS
Differential Synchronization builds upon existing difference and 
patch algorithms to produce a robust collaborative platform.  The 
use of differences eliminates the need to detect edit events directly 
and  makes  the  system  naturally  convergent.   The  guaranteed 
synchronization  method  solves  both  the  problem  of  network 
failures and the problem of batching small (more efficient) edits 
into one connection.

Differential Synchronization has proven itself to work extremely 
well as implemented by MobWrite and compatible systems.  It is 
impressively accommodating of multiple users who are working 
on  the  same  text.   Tests  consistently  show  that  MobWrite's 
technical scalability far exceeds the point where social scalability 
breaks down.  The limits of social scalability depend on the nature 



of the collaborators, the size of the document and the nature of the 
tasks  being  performed.   For  example  a  dozen  coworkers 
simultaneously fixing OCR errors in a large document works well, 
whereas a single anonymous web user on an open wiki can render 
it unusable.  By contrast, the limit of technical scalability on an 
existing  single-server  implementation  has  been  load  tested  as 
lying in the 100 edits per second range.

A  finding  from  user  observation  is  that  some  form  of 
communication channel should be available to collaborators.  This 
may take  the  form of  instant  messaging,  the  telephone  or  just 
talking over  a cubical  wall.   Failure  to  provide  an out-of-band 
channel will result in users subverting the system to create an in-
band channel.  Documents end up littered with temporary user-to-
user chat messages which they often forget to clean up afterwards.
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